Robust Question Answering
نویسندگان
چکیده
A Question Answering (QA) system should provide a short and precise answer to a question in natural language, by searching a large knowledge base consisting of natural language text. The sources of the knowledge base are widely available, for written natural language text is a preferential form of human communication. The information ranges from the more traditional edited texts, for example encyclopaedias or newspaper articles, to text obtained by modern automatic processes, as automatic speech recognizers. The work developed in the present thesis focuses on the Portuguese language and open domain question answering, meaning that neither the questions nor the texts are restricted to a specific area, and it aims to address both types of written text. Since information retrieval is essential for a QA system, a careful analysis of the current state-of-the-art in information retrieval and question answering components was conducted. A complete, efficient and robust question answering system is developed in this thesis, consisting of new modules for information retrieval and question answering, that is competitive with current QA systems. The system was evaluated at the Portuguese monolingual task of QA@CLEF 2008 and achieved the 3rd place in 6 Portuguese participants and 5th place among the 21 participants of 11 languages. The system was also tested in Question Answering over Speech Transcripts (QAST), but outside the official evaluation QAST of QA@CLEF, since Portuguese was not among the available languages for this task. For that reason, an entire test environment consisting of a corpus of transcribed broadcast news and a matching question set was built in the scope of this work, so that experiments could be made. The system proved to be robust in the presence of automatically transcribed data, with results in line with the best reported at QAST.
منابع مشابه
ارایه یک پیکره پرسش و پاسخ مذهبی در زبان فارسی
Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...
متن کاملHow to Revert Question Answering on Knowledge Graphs
A large scale question answering dataset has a potential to enable development of robust and more accurate question answering systems. In this direction, we introduce a framework for creating such datasets which decreases the manual intervention and domain expertise traditionally needed. We describe in details the architecture and the design decision we took while creating the
متن کاملInvestigating Embedded Question Reuse in Question Answering
The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...
متن کاملBoosting Passage Retrieval through Reuse in Question Answering
Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...
متن کاملRobust Question Answering for Speech Transcripts Using Minimal Syntactic Analysis
This paper describes the participation of the Technical University of Catalonia in the CLEF 2007 Question Answering on Speech Transcripts track. For the processing of manual transcripts we have deployed a robust factual Question Answering that uses minimal syntactic information. For the handling of automatic transcripts we combine the QA system with a novel Passage Retrieval and Answer Extracti...
متن کاملRobust Question Answering for Speech Transcripts: UPC Experience in QAst 2008
This paper describes the participation of the Technical University of Catalonia in the CLEF 2008 Question Answering on Speech Transcripts track. We have participated in the English and Spanish scenarios of QAst. For the processing of manual transcripts we have deployed a robust factual Question Answering that uses minimal syntactic information. For the handling of automatic transcripts we combi...
متن کامل